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Identifying metagenomic sequences
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read2: ATGGGAT 
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read6: TATAGGC 
read7: CNGTCGT 
read8: ACCCAGT

SequencingExtraction
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Species 1

Species 2

Species 3

Species 4

reference genomes

Extraction

1



[Díaz et al., 2022]

  

  

~8 million ~1.5 million

200,000 Byr 80,000 Byr

Novel sequences challenge popular tools

• Reference databases (and indexes) remain 
incomplete compared to all species…

and there is a rich diversity within species!
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Novel sequences challenge popular tools

• Reference databases (and indexes) remain 
incomplete compared to all species…

Novelty increases 

Kraken-II

[Rachtman et al., 2019]

(1-ANI estimated by Mash)

• Novel sequences: sequences which lack 
a close matching reference genome

and there is a rich diversity within species!
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‣ find distant matches  increase sensitivity of the search 

‣ enhance the reference set  utilize more genomes & larger databases

→
→

Solutions for identifying novel queries w/ limited resources
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‣ find distant matches  increase sensitivity of the search 

‣ enhance the reference set  utilize more genomes & larger databases

→
→

Solutions for identifying novel queries w/ limited resources

Computing the Hamming distances of inexact matches

: best k-mer-based tool

(using a RefSeq snapshot from 2019 with ~130k genomes)

Bracken

CCMetagen

CONSULT−II
Centrifuge

DUDes
FOCUS

MetaPhlAn

MetaPhyler

Metalign
TIPP

mOTUs
0 0.25 0.5 0.75 1

L1 norm error

Strain−madness dataset

: marker-based, only profiling
[CAMI-II]

(at genus)
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Can we use more reference genomes?
‣ find distant matches  increase sensitivity of the search 

‣ enhance the reference set  utilize more genomes & larger databases

→
→
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Can we use more reference genomes?

• Challenge: very large & diverse databases 
have too many k-mers to fit in the memory 
‣ Limited to a selected subset 

• This talk: — KRANK 
‣ Selecting a representative subset of k-mers 

+ classification/profiling using CONSULT-II

‣ find distant matches  increase sensitivity of the search 

‣ enhance the reference set  utilize more genomes & larger databases

→
→
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Can we use more reference genomes?

• Challenge: very large & diverse databases 
have too many k-mers to fit in the memory 
‣ Limited to a selected subset 

• This talk: — KRANK 
‣ Selecting a representative subset of k-mers 

+ classification/profiling using CONSULT-II

[CAMI-II]
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CONSULT−II
Centrifuge

DUDes
FOCUS

KRANK
MetaPhlAn

MetaPhyler

Metalign
TIPP

mOTUs
0 0.25 0.5 0.75 1

L1 norm error

Strain−madness dataset

(using a RefSeq snapshot from 2019 with ~130k genomes)

(50 GB) + reduced 
memory use!(140 GB)

(at genus)

‣ find distant matches  increase sensitivity of the search 

‣ enhance the reference set  utilize more genomes & larger databases

→
→
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Problem statement
• Given: 

1. k-mer set  of a large collection of genomes 
2. limited budget  
3. taxonomy

𝒦
M < |𝒦 |

G1: TCCCTGCTCAGTGGTATATGGTTTTTGCTA… 
G2: TCCCTGCTCAGCCCCATATGGTTTTTGCTA… 
G3: CAATGTGCGGATGGCGTTACGACTTACTGG… 
G4: CCCCAAACGATGCTGAAGGCTCAGGTTACA… 
G5: GCGCGGGTTCCCGCCCTCAACCCGGGCCGA… 
G6: AGTTGCACTACTTCTGCGACCCAAATGCAC… 
G7: TACCACTGTGTTCGTGTCATCTAGGACGGG… 
G8: TACCACTGTGTTCGTGTCATCTAGGACGGG… 
G9: CAATTAAGAATACCTTATATTATTGTACAC… 
... 
GN: ATTATCTGATTTTATATTATGATTTTAGTA…

Species 1

Species 2

Species 3

Species 4

𝒦

Species 2

Species 3

Spec
ies

 4

Species 1
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Problem statement
• Given: 

1. k-mer set  of a large collection of genomes 
2. limited budget  
3. taxonomy

𝒦
M < |𝒦 |

• Select a subset with size  such that the collection is well representedM

G1: TCCCTGCTCAGTGGTATATGGTTTTTGCTA… 
G2: TCCCTGCTCAGCCCCATATGGTTTTTGCTA… 
G3: CAATGTGCGGATGGCGTTACGACTTACTGG… 
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G7: TACCACTGTGTTCGTGTCATCTAGGACGGG… 
G8: TACCACTGTGTTCGTGTCATCTAGGACGGG… 
G9: CAATTAAGAATACCTTATATTATTGTACAC… 
... 
GN: ATTATCTGATTTTATATTATGATTTTAGTA…

Species 1

Species 2

Species 3

Species 4

𝒦

high accuracy in 
taxonomic identification 

|𝒦′ | = M

Species 2

Species 3

Spec
ies

 4

Species 1

?
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Reducing the reference set by selecting k-mers
G1: TCCCTGC 
     CCCTGCT 
      CCTGCTC 
       CTGCTCA…
G2: TCGCTAC 
     CGCTACG 
      GCTACGC 
       CTACGCG…
G3: CAATGTG 
     AATGTGC 
      ATGTGCG 
       TGTGCGG…
G5: GCGCGGG 
     CGCGGGT 
      GCGGGTT 
       CGGGTTC…
G4: CCCCAAA 
     CCCAAAC 
      CCAAACG 
       CAAACGT…
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• Baseline: random selection
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• Baseline: random selection

• Minimizers: selecting one among overlapping 
k-mers with a sliding window

Reducing the reference set by selecting k-mers
G1: TCCCTGC 
     CCCTGCT 
      CCTGCTC 
       CTGCTCA…
G2: TCGCTAC 
     CGCTACG 
      GCTACGC 
       CTACGCG…
G3: CAATGTG 
     AATGTGC 
      ATGTGCG 
       TGTGCGG…
G5: GCGCGGG 
     CGCGGGT 
      GCGGGTT 
       CGGGTTC…
G4: CCCCAAA 
     CCCAAAC 
      CCAAACG 
       CAAACGT…

6



• Baseline: random selection

• Minimizers: selecting one among overlapping 
k-mers with a sliding window

• Even with minimizers, number of distinct k-mers 
grows fast with the number of genomes

Reducing the reference set by selecting k-mers
G1: TCCCTGC 
     CCCTGCT 
      CCTGCTC 
       CTGCTCA…
G2: TCGCTAC 
     CGCTACG 
      GCTACGC 
       CTACGCG…
G3: CAATGTG 
     AATGTGC 
      ATGTGCG 
       TGTGCGG…
G5: GCGCGGG 
     CGCGGGT 
      GCGGGTT 
       CGGGTTC…
G4: CCCCAAA 
     CCCAAAC 
      CCAAACG 
       CAAACGT…

95 96 97 98 99 100
Average nucleotide identity (%)

0.6 0.7 0.8 0.9 1.0
Shared genome fraction

330 species (4346079 pairs)

[Rodriguez-R et al., 2023]
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• Baseline: random selection

• Minimizers: selecting one among overlapping 
k-mers with a sliding window

• Even with minimizers, number of distinct k-mers 
grows fast with the number of genomes

• Additionally, exploit the evolutionary dimension
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KRANK selects a representative k-mer subset 
in a memory-bound manner!

Core idea: instead of computing all intersections; 
hierarchical subsampling through a post order 
traversal of the taxonomic tree

𝒦

Species

Genus

Family

Class

Order
Phylum

Kingdom

…
…

…
…

…
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KRANK selects a representative k-mer subset 
in a memory-bound manner!

Core idea: instead of computing all intersections; 
hierarchical subsampling through a post order 
traversal of the taxonomic tree
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…
…

…
…

…
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Gradual filtering of k-mers at internal nodes
• Recursively take the union of sibling taxa
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…
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GGGGAAC

…
…
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Gradual filtering of k-mers at internal nodes
• Recursively take the union of sibling taxa

• Filter some number of k-mers based on a ranking

• At the root, we obtain the final library with size M
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Q1: How many k-mers should we 
remove from each node/taxon?

Q2: How do we rank k-mers to assess 
which one(s) should be kept?

9



• Baseline: no gradual filtering — wait & select  randomly at the rootM
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• Baseline: no gradual filtering — wait & select  randomly at the rootM

M
|𝒦t |
|𝒦 |

Given total budget , 
 is

M
𝔼[# of selected k-mers for a taxon t]

set of all 
reference k-mers

set of k-mers 
under the taxon t
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• Baseline: no gradual filtering — wait & select  randomly at the rootM

M
|𝒦t |
|𝒦 |

Given total budget , 
 is

M
𝔼[# of selected k-mers for a taxon t]

set of all 
reference k-mers

set of k-mers 
under the taxon t

• Proportional contribution   
‣ taxa with low sampling get little representation 
‣ highly-sampled groups dominates (e.g., E. coli) 

→

1

10

100

1000

10000

1 10 100 1000 10000
# of genomes sequenced

# 
of

 s
pe

ci
es
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Gradual filtering is making some decisions earlier
Goal: remove k-mers from bloated taxa earlier & delay decisions for smaller taxa 
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Gradual filtering is making some decisions earlier

• Adaptive size constraint, , on internal nodesr(t)M

ATCAGTT 
TATTTCG 
TTCGAGT 
CCCGGAT

CCCAGTT 
TATTTCG 
ATGCAGT 
CCCGGAT

ATCAGTT 
TAGTTCG 
ATGCAGT 
GGGGAAC

Species

Genus

Family

Class

Order

Phylum

Kingdom

r(root) = 1

r(t)

0 ≤ r(t) ≤ 1

increases as we go up in the tree!

Goal: remove k-mers from bloated taxa earlier & delay decisions for smaller taxa 
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Gradual filtering is making some decisions earlier

• Adaptive size constraint, , on internal nodesr(t)M

•  is a heuristic: square root of ratio of k-mers under r(t) t

• Concavity of  favors taxa with fewer k-mers 
(less diversity or sparsely sampled)

r(t)
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Total k−mer count ratio

r(t
)

linear
square root

EscherichiaMethanobrevibacter

<

Goal: remove k-mers from bloated taxa earlier & delay decisions for smaller taxa 
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Adaptive size constraint improves classification

0.1

0.2

0.3

0.4

0.5

0.6

kingdom phylum class order family genus species
Taxonomic rank

F1

Approach
Mixed
None

(empirical analysis using 3.2Gb, in WoL-v1 with 9k species, 10k genomes)

(selecting randomly)

select at root
select with constraint
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Q1: How many k-mers should we 
remove from each node/taxon?

Q2: How do we rank k-mers to assess 
which one(s) should be kept?
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Which k-mers would provide better representation?

Baseline: selecting randomly until the constraint is satisfied
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Which k-mers would provide better representation?

𝒦

Baseline: selecting randomly until the constraint is satisfied

t1 t2 t3 t4

parent taxon

…
…

|𝒦′ | = M

shared k-mers

discriminative k-mers

Alternatives:

?

14



Which k-mers would provide better representation?

𝒦

Baseline: selecting randomly until the constraint is satisfied

# of species under t with k-mer x

x1 x2 x3 … x|K`|

t1 4 7 0 … 3

t2 0 0 2 … 0

t3 0 0 1 … 1

t4 2 2 1 … 0

Score: 6 9 4 … 4

t1 t2 t3 t4

parent taxon

…
…

|𝒦′ | = M

shared k-mers

discriminative k-mers

Alternatives:

?
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Which k-mers would provide better representation?

𝒦

Baseline: selecting randomly until the constraint is satisfied

# of species under t with k-mer x

x1 x2 x3 … x|K`|

t1 4 7 0 … 3

t2 0 0 2 … 0

t3 0 0 1 … 1

t4 2 2 1 … 0

Score: 6 9 4 … 4

t1 t2 t3 t4

parent taxon

high scores

low scores…
…

|𝒦′ | = M

shared k-mers

discriminative k-mers

Alternatives:

?
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Neither discriminative nor shared k-mers improve the baseline

(empirical analysis using 3.2Gb, in WoL-v1 with 9k species, 10k genomes)

0.2

0.4

0.6

kingdomphylum class order family genus species
Taxonomic rank

F1

Approach
discriminative k−mers
random
shared k−mers

discriminative k-mers
random k-mers
shared k-mers

Approach
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t1 t2 t3 t4

parent taxon

ATCAGTT 
TAGTTCG 
ATGCAGT 
GGGGAAC 
AATTTAC 
GTCGAAT

AAAAGTT 
TTATCGT 
GCGCTTA 
GGGGAAC 
AATTTGG 
GTCGAAT

ATCAGTT 
GTCGCCA 
GCGCTTA 

CTTAAGG 
TTATCGT 
GCGCGCA 
GGGGAAC 
AATTTGG 
CCGTATT 
TCAGATT 
GGGCTAT 
GCTATTC 
GTCATTA 
ATCGTAT

Incorporating taxon coverage in ranking
Intuition: keep shared k-mers but 
ensure no group is left uncovered

t2: Needs to be prioritized!
t1: Afford to remove more!
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t1 t2 t3 t4

parent taxon

ATCAGTT 
TAGTTCG 
ATGCAGT 
GGGGAAC 
AATTTAC 
GTCGAAT

AAAAGTT 
TTATCGT 
GCGCTTA 
GGGGAAC 
AATTTGG 
GTCGAAT

ATCAGTT 
GTCGCCA 
GCGCTTA 

CTTAAGG 
TTATCGT 
GCGCGCA 
GGGGAAC 
AATTTGG 
CCGTATT 
TCAGATT 
GGGCTAT 
GCTATTC 
GTCATTA 
ATCGTAT

Incorporating taxon coverage in ranking
Intuition: keep shared k-mers but 
ensure no group is left uncovered

Scalable heuristic: down-weight the impact of taxa 
that are highly covered among surviving k-mers

0.09 0.33 0.17 0.17

t1 t2 t4t3

t2: Needs to be prioritized!
t1: Afford to remove more!
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t1 t2 t3 t4

parent taxon

ATCAGTT 
TAGTTCG 
ATGCAGT 
GGGGAAC 
AATTTAC 
GTCGAAT

AAAAGTT 
TTATCGT 
GCGCTTA 
GGGGAAC 
AATTTGG 
GTCGAAT

ATCAGTT 
GTCGCCA 
GCGCTTA 

CTTAAGG 
TTATCGT 
GCGCGCA 
GGGGAAC 
AATTTGG 
CCGTATT 
TCAGATT 
GGGCTAT 
GCTATTC 
GTCATTA 
ATCGTAT

Incorporating taxon coverage in ranking
Intuition: keep shared k-mers but 
ensure no group is left uncovered

Scalable heuristic: down-weight the impact of taxa 
that are highly covered among surviving k-mers

⋅

# of species under t with k-mer x

x1 x2 x3 … x|K`|

t1 4 7 0 … 3

t2 0 0 2 … 0

t3 0 0 1 … 1

t4 2 2 1 … 0

Score: 0.7 0.97 1 … 0.44

0.09

0.33

0.17

0.17

weights of taxa
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Neither discriminative nor shared k-mers improve the baseline

0.2

0.4

0.6

kingdom phylum class order family genus species
Taxonomic rank

F1

Approach
random
shared k−mers
taxon coverage

(empirical analysis using 3.2Gb, in WoL-v1 with 9k species, 10k genomes)

weighted sum
shared k-mers

Approach
random
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• KRANK puts all these heuristics together:  
‣ weighted-sum ranking + adaptive size constraint 
‣ other minor tricks 
‣ highly optimized and scalable implementation

18



[0,0.01]

(0.01,0.1]

(0.1,0.25]

4 16 64

0.1
0.2
0.3
0.4

0.5

0.6

0.7

0.65
0.70
0.75
0.80
0.85

Memory (Gb)

F1

Kraken−II v2.1.3 CLARK v1.2.6.1

CONSULT−II v0.4.0 KRANK v0.3.2

Short−read classification in WoL−v1KRANK builds lightweight and robust 
reference libraries

• Simulated reads across different novelty levels

high novelty

moderate novelty

low novelty

10k genomes 
9k species
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4 16 64

0.1
0.2
0.3
0.4

0.5
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0.7

0.65
0.70
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0.80
0.85

Memory (Gb)

F1

Kraken−II v2.1.3 CLARK v1.2.6.1

CONSULT−II v0.4.0 KRANK v0.3.2

Short−read classification in WoL−v1KRANK builds lightweight and robust 
reference libraries

• Simulated reads across different novelty levels

• Adjusting the memory usage and observing 
the impact on the performance

• KRANK preserves the same level of robust 
performance with much smaller k-mer subsets

high novelty

moderate novelty

low novelty

10k genomes 
9k species
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Boosting the performance in CAMI-II with a smaller subset

• Library construction: 3-hours (36 nodes  14 cores) for RefSeq genomes (2019)×
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Boosting the performance in CAMI-II with a smaller subset

• Library construction: 3-hours (36 nodes  14 cores) for RefSeq genomes (2019)×
• Consistently improves CONSULT-II across all ranks

CONSULT-II: 140Gb

KRANK: 51Gb
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Boosting the performance in CAMI-II with a smaller subset

• Library construction: 3-hours (36 nodes  14 cores) for RefSeq genomes (2019)×
• Consistently improves CONSULT-II across all ranks

• Second-best tool according to rank-invariant UniFrac error
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Strain−madness dataset of CAMI−II

CONSULT-II: 140Gb

KRANK: 51Gb
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• KRANK uses taxonomy to subsample large k-mer databases 
‣ based on carefully chosen heuristics 
‣ used in combination with minimizers 

• Future work includes: 
‣ exploring alternatives strategy a more principled approach 

- better modeling of imbalance 
- using a phylogenetic tree 

‣ pairing KRANK with other classification methods 
‣ pairing with sketching algorithms
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Extra Slides



The case against discriminative k-mers

Given a query genome, what is the expected 
portion of shared k-mers in a reference set 
with  genomes within  distance?N 2d

(1 − d)k(1 − (1 − (1 − d)k)N)

k-mer from the ancestor 
stays same

k-mer from the ancestor 
changes in all N

• Problem: considerably small portion of k-mers are shared within a group! 
(it gets worse for upper ranks)

๏Claim: Removing common k-mers 
will make it difficult to find matches!



The case against discriminative k-mers
• Problem: considerably small portion of k-mers are shared within a group! 

(it gets worse for upper ranks)

๏Claim: Removing common k-mers 
will make it difficult to find matches!

 Example: within d = 20% diversity (~genus)

‣ : 0.7% of query 30-mers, 

‣ : 4.2% of query 30-mers, 

will be found in at least one reference.

N = 5

N → ∞



Bonus: compact k-mer encodings

We only compute HD between k-mers that have the same hash value!

CONSULT-II used 2 bits per letter: 64bit for 32-mers.

We do not need  positions used to compute LSH; they are already the same!h

Just drop LSH positions and store the rest: ,   32bitk = 32 h = 16 →

ATCTTGATTCATGCCTGCGGCAAGATCGAGAx ATTTATTCTCGCGCAAGTCAA



• KRANK 13Gb competes with CONSULT-II 144Gb. 

• Novel queries were accurately classified at higher ranks. 

• With little memory, KRANK+CONSULT-II is highly sensitive.

Improvements are pronounced at 
higher ranks
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