Memory-bound and taxonomy-aware k-mer selection for large reference databases

Bioinformatics & Systems Biology

Ali Osman Berk Şapcı & Siavash Mirarab UC San Diego

<u>UC San Diego</u>

Electrical and Computer Engineering JACOBS SCHOOL OF ENGINEERING

find similar reference genomes

[Díaz et al., 2022]

Phylogenetic diversity

Novel sequences challenge popular tools

- Reference databases (and indexes) remain incomplete compared to all species…
	- and there is a rich diversity within species!

Species diversity

Novel sequences challenge popular tools

- Reference databases (and indexes) remain incomplete compared to all species…
	- and there is a rich diversity within species!

[Rachtman et al., 2019]

• Novel sequences: sequences which lack a close matching reference genome

Solutions for identifying novel queries w/ limited resources

- \blacktriangleright (find distant matches \rightarrow increase sensitivity of the search
-

 \blacktriangleright enhance the reference set \rightarrow utilize more genomes & larger databases

Solutions for identifying novel queries w/ limited resources

\blacktriangleright (find distant matches \rightarrow increase sensitivity of the search

Computing the Hamming distances of inexact matches

CONSULT-II: accurate taxonomic identification and profiling using locality-sensitive hashing

Ali Osman Berk Şapcı (D¹, Eleonora Rachtman (D¹, Siavash Mirarab (D^{1,2,*}

 \blacktriangleright enhance the reference set \rightarrow utilize more genomes & larger databases

Solutions for identifying novel queries w/ limited resources

\blacktriangleright (find distant matches \rightarrow increase sensitivity of the search

\blacktriangleright enhance the reference set \rightarrow utilize more genomes & larger databases

Computing the Hamming distances of inexact matches

CONSULT-II: accurate taxonomic identification and profiling using locality-sensitive hashing

Ali Osman Berk Şapcı (D¹, Eleonora Rachtman (D¹, Siavash Mirarab (D^{1,2,*}

Strain−madness dataset [CAMI-II]

Can we use more reference genomes?

 \blacktriangleright find distant matches \rightarrow increase sensitivity of the search

 \blacktriangleright enhance the reference set \rightarrow utilize more genomes & larger databases

Can we use more reference genomes?

- \blacktriangleright find distant matches \rightarrow increase sensitivity of the search
-

- **Challenge:** very large & diverse databases have too many *k*-mers to fit in the memory
	- ‣ Limited to a selected subset
- **This talk: KRANK**
	- ‣ Selecting a representative subset of *k*-mers + classification/profiling using CONSULT-II

 \blacktriangleright enhance the reference set \rightarrow utilize more genomes & larger databases

Can we use more reference genomes?

- \blacktriangleright find distant matches \rightarrow increase sensitivity of the search
-

- **Challenge:** very large & diverse databases have too many *k*-mers to fit in the memory
	- ‣ Limited to a selected subset
- **This talk: KRANK**
	- ‣ Selecting a representative subset of *k*-mers + classification/profiling using CONSULT-II

\blacktriangleright enhance the reference set \rightarrow utilize more genomes & larger databases

[CAMI-II] **Strain−madness dataset**

(using a RefSeq snapshot from 2019 with ~130k genomes)

Problem statement

• Given:

- 1. *k*-mer set $\mathcal K$ of a large collection of genomes
- 2. limited budget $M < |\mathcal{K}|$
- 3. taxonomy

Problem statement

• Select a subset with size M such that the collection is well represented

• Given:

- 1. *k*-mer set $\mathcal X$ of a large collection of genomes
- 2. limited budget $M < |\mathcal{K}|$
- 3. taxonomy
-

Problem statement

• Given:

- 1. *k*-mer set $\mathcal X$ of a large collection of genomes
- 2. limited budget $M < |\mathcal{K}|$
- 3. taxonomy
-

• Select a subset with size *M* such that the collection is well represented

high accuracy in

-
-
-
-
-
-
-
- -

G1: TCCCTGC **CCCTGCT CCTGCTC** CTGCTCA… G2: TCGCTAC CGCTACG **GCTACGC** CTACGCG… G3: CAATGTG AATGTGC ATGTGCG TGTGCGG… G5: GCGCGGG CGCGGGT GCGGGTT CGGGTTC… G4: CCCCAAA CCCAAAC CCAAACG CAAACGT…

• **Baseline:** random selection

Reducing the reference set by selecting k-mers

G1: TCCCTGC **CCCTGCT CCTGCTC** CTGCTCA… G2: TCGCTAC CGCTACG GCTACGC CTACGCG… G3: CAATGTG AATGTGC ATGTGCG TGTGCGG… G5: GCGCGGG CGCGGGT GCGGGTT CGGGTTC… G4: CCCCAAA CCCAAAC CCAAACG CAAACGT…

- **Baseline:** random selection
- **Minimizers:** selecting one among overlapping *k*-mers with a sliding window

G1: TCCCTGC **CCCTGCT** CCTGCTC CTGCTCA… G2: TCGCTAC CGCTACG **GCTACGC** CTACGCG… G3: CAATGTG AATGTGC ATGTGCG TGTGCGG… G5: GCGCGGG CGCGGGT GCGGGTT CGGGTTC… G4: CCCCAAA CCCAAAC CCAAACG CAAACGT…

- **Baseline:** random selection
- **Minimizers:** selecting one among overlapping *k*-mers with a sliding window
- Even with minimizers, number of distinct *k*-mers grows fast with the number of genomes

G1: TCCCTGC **CCCTGCT** CCTGCTC CTGCTCA… G2: TCGCTAC CGCTACG **GCTACGC** CTACGCG… G3: CAATGTG AATGTGC ATGTGCG TGTGCGG… G5: GCGCGGG CGCGGGT GCGGGTT CGGGTTC… G4: CCCCAAA CCCAAAC CCAAACG CAAACGT…

- **Baseline:** random selection
- **Minimizers:** selecting one among overlapping *k*-mers with a sliding window
- grows fast with the number of genomes

KRANK selects a representative *k*-mer subset in a memory-bound manner!

Core idea: instead of computing all intersections; hierarchical subsampling through a post order traversal of the taxonomic tree

KRANK selects a representative *k*-mer subset in a memory-bound manner!

Core idea: instead of computing all intersections; hierarchical subsampling through a post order traversal of the taxonomic tree

• Recursively take the union of sibling taxa

- Recursively take the union of sibling taxa
- Filter *some number* of *k*-mers based on *a ranking*

- Recursively take the union of sibling taxa
- Filter *some number* of *k*-mers based on *a ranking*
- At the root, we obtain the final library with size *M*

- Recursively take the union of sibling taxa
- Filter *some number* of *k*-mers based on *a ranking*
- At the root, we obtain the final library with size *M*

Q1: How many *k*-mers should we remove from each node/taxon?

Q2: How do we rank *k*-mers to assess which one(s) should be kept?

• **Baseline:** no gradual filtering — wait & select *M* randomly at the root

Given total budget M , $[$ # of selected k -mers for a taxon t] is

• **Baseline:** no gradual filtering — wait & select *M* randomly at the root

Given total budget M , $[$ # of selected k -mers for a taxon t] is

• **Baseline:** no gradual filtering — wait & select *M* randomly at the root

- Proportional contribution →
	- taxa with low sampling get little representation
	- ‣ highly-sampled groups dominates (e.g., *E. coli*)

• Adaptive size constraint, *r*(*t*)*M*, on internal nodes

increases as we go up in the tree!

- Adaptive size constraint, *r*(*t*)*M*, on internal nodes
- *r*(*t*) is a heuristic: square root of ratio of *k*-mers under *t*

increases as we go up in the tree!

- Adaptive size constraint, *r*(*t*)*M*, on internal nodes
- *r*(*t*) is a heuristic: square root of ratio of *k*-mers under *t*
- Concavity of $r(t)$ favors taxa with fewer k-mers (less diversity or sparsely sampled)

Adaptive size constraint improves classification

Approach

- select with constraint
- select at root

(empirical analysis using 3.2Gb, in WoL-v1 with 9k species, 10k genomes)

(selecting randomly)

Q1: How many *k*-mers should we remove from each node/taxon?

Q2: How do we rank *k*-mers to assess which one(s) should be kept?

Baseline: selecting randomly until the constraint is satisfied

Baseline: selecting randomly until the constraint is satisfied

Baseline: selecting randomly until the constraint is satisfied

shared *k*-mers

discriminative *k*-mers

?

14

Baseline: selecting randomly until the constraint is satisfied

of species under t with k-mer x

shared *k*-mers

discriminative *k*-mers

?

Baseline: selecting randomly until the constraint is satisfied

of species under t with k-mer x

low scores discriminative *k*-mers

high scores shared *k*-mers

?

Neither discriminative nor shared k-mers improve the baseline

(empirical analysis using 3.2Gb, in WoL-v1 with 9k species, 10k genomes)

- Approach Approach
- discriminative k−mers discriminative *k*-mers
- random random *k*-mers
- shared k−mers shared *k*-mers

t2: Needs to be prioritized! t₁: Afford to remove more!

Incorporating taxon coverage in ranking

Intuition: keep shared *k-*mers but ensure no group is left uncovered

Scalable heuristic: down-weight the impact of taxa that are highly covered among surviving k-mers

- t₁: Afford to remove more!
- **t2:** Needs to be prioritized!

Incorporating taxon coverage in ranking

Intuition: keep shared *k-*mers but ensure no group is left uncovered

t1 t2 t3 t4 parent taxon ATCAGT **TAGTTC ATGCAGT GGGGAA** AATTTAC **GTCGAAT** AAAAGTT TTATCGT **GCGCTTA** GGGGAAC AATTTGG GTCGAAT ATCAGTT **GTCGCCA GCGCTTA CTTAAGG** TTATCGT GCGCGC GGGGAAC AATTTGG CGTA^* TCAGATT GGGCTA $GCTAT$ GTCATT/ ATCGTAT

we

Scalable heuristic: down-weight the impact of taxa that are highly covered among surviving k-mers

Incorporating taxon coverage in ranking

Intuition: keep shared *k-*mers but ensure no group is left uncovered

of species under t with k-mer x

Neither discriminative nor shared k-mers improve the baseline

shared k−mers shared *k*-mers

(empirical analysis using 3.2Gb, in WoL-v1 with 9k species, 10k genomes)

weighted sum

random random

• **KRANK** puts all these heuristics together:

‣ weighted-sum ranking + adaptive size constraint

-
- ‣ other minor tricks
-

‣ highly optimized and scalable implementation

KRANK builds lightweight and robust reference libraries

• Simulated reads across different novelty levels

KRANK builds lightweight and robust reference libraries

- Simulated reads across different novelty levels
- Adjusting the memory usage and observing the impact on the performance

KRANK builds lightweight and robust reference libraries

- Simulated reads across different novelty levels
- Adjusting the memory usage and observing the impact on the performance
- KRANK preserves the same level of robust performance with much smaller *k*-mer subsets

Boosting the performance in CAMI-II with a smaller subset

• Library construction: 3-hours (36 nodes \times 14 cores) for RefSeq genomes (2019)

• Library construction: 3-hours (36 nodes \times 14 cores) for RefSeq genomes (2019)

Boosting the performance in CAMI-II with a smaller subset

-
- Consistently improves CONSULT-II across all ranks

Boosting the performance in CAMI-II with a smaller subset

- Library construction: 3-hours (36 nodes \times 14 cores) for RefSeq genomes (2019)
- Consistently improves CONSULT-II across all ranks
- Second-best tool according to rank-invariant UniFrac error

Strain−madness dataset of CAMI−II

CONSULT-II: 140Gb KRANK: 51Gb

- KRANK uses taxonomy to subsample large *k*-mer databases
	- ‣ based on carefully chosen heuristics
	- ‣ used in combination with minimizers
- Future work includes:
	- ‣ exploring alternatives strategy a more principled approach
		- better modeling of imbalance
		- using a phylogenetic tree
	- ‣ pairing KRANK with other classification methods
	- ‣ pairing with sketching algorithms

- KRANK uses taxonomy to subsample large *k*-mer databases
	- ‣ based on carefully chosen heuristics
	- ‣ used in combination with minimizers
- Future work includes:
	- ‣ exploring alternatives strategy a more principled approach
		- better modeling of imbalance
		- using a phylogenetic tree
	- ‣ pairing KRANK with other classification methods
	- ‣ pairing with sketching algorithms

Extra Slides

The case against discriminative k-mers

๏Claim: Removing common *k*-mers (a) 10.00%

and Sole 1.00%

and 5 0.10%

and 0.01% will make it difficult to find matches!Given a query genome, what is the expected portion of shared *k*-mers in a reference set Within group with *N* genomes within 2*d* distance? diversity $5%$ 10% *k k N* $(1 - d)$ $(1 - (1 - d))$)) 15% 20% 25% $-33%$ *k*-mer from the ancestor *k*-mer from the ancestor changes in all *N* stays same 10 100 1000 Number of reference genomes

• **Problem:** considerably small portion of *k*-mers are shared within a group! (it gets worse for upper ranks)

The case against discriminative k-mers

• **Problem:** considerably small portion of *k*-mers are shared within a group! (it gets worse for upper ranks)

๏Claim: Removing common *k*-mers will make it difficult to find matches!

Example: within $d = 20\%$ diversity (~genus)

 $\blacktriangleright N = 5: 0.7\%$ of query 30-mers,

 \rightarrow ∞ : 4.2% of query 30-mers,

will be found in at least one reference.

Bonus: compact k-mer encodings

- CONSULT-II used 2 bits per letter: 64bit for 32-mers.
- We only compute HD between *k*-mers that have the same hash value!
- We do not need *h* positions used to compute LSH; they are already the same!

Just drop LSH positions and store the rest: $k = 32$, $h = 16 \rightarrow 32$ bit

Improvements are pronounced at higher ranks

- KRANK 13Gb competes with CONSULT-II 144Gb.
- Novel queries were accurately classified at higher ranks.
- With little memory, KRANK+CONSULT-II is highly sensitive.

SR classification in WoL−v1

- CLARK v1.2.6.1 (149.6Gb)
- CONSULT-II v0.4.0 (140.7Gb)

 $\overline{\mathbb{L}}$

- Kraken-II v2.1.3 (46.5Gb)
- KRANK-hs v0.3.2 (51.2Gb)
- KRANK-lw v0.3.2 (12.8Gb)