Leveraging NVMs for Neural Interface Coverage

Muhammed Ugur, Raghavendra Pradyumna Pothukuchi, Abhishek Bhattacharjee

Neural Interfaces and NVMs

What are Neural Interfaces?

Neural Interfaces

Neural Interfaces

Clinical Uses

Assistive Movement and Communication

I de la la salar par particular. La cal la salar de la calacteritaria.

The BrainGate Collaboration, Brown University, Mass General

Willet et al., Stanford University

Many More Uses

The New York Times

A 'Pacemaker for the Brain': No Treatment Helped Her Depression — Until This

It's the first study of individualized brain stimulation to treat severe depression. Sarah's case raises the possibility the method may help people who don't respond to other therapies.

A Brain Implant Improved Memory, Scientists Report

A magnetic resonance image of an epileptic brain. Scientists have tested a brain implant on people with epilepsy that aided memory. Bsip/UIG, via Getty Images

Brain Implants Allow Paralyzed Man to Walk Using His Thoughts

In a new study, researchers describe a device that connects the intentions of a paralyzed patient to his physical movements.

FDA-approved Devices for Epilepsy, Parkinson's, Multiple Sclerosis, Dystonia

HEALTHCARE

Brain Implants With The Potential To Restore Vision To The Blind

Safety and Implantation

Y

Power within Tens of mW

Data Volume

5

Data Volume

Benefits of Data Volume

Difference between Coarse-grained vs. Fine-grained Movements

The BrainGate Collaboration, Brown University, Mass General

System Requirements

High Data Rates

Power within Tens of mW

Real-Time Processing

Wired Options

Wireless Options

Wireless

Power Limits Bandwidth

0

On-Device Processing

On-Device Storage

Y

12

On-Device Storage

Existing Systems

NeuroPace RNS

Y

I MB Storage ~10 Kbps

Existing Systems

SCALO

Y

46 Mbps I 28 GB NVM Many Accelerators

Existing Systems

SCALO

46 Mbps I 28 GB NVM Many Accelerators

Long-Term Vision

6

Fixed Data Rate

17

Cannot Rely on SRAM

Spectral Analysis

Fast Fourier Transform (FFT)

Discrete Wavelet Transform (DWT)

Butterworth Bandpass Filter (BBF)

Similarity Measures

Dynamic Time Warping (DTW)

Cross Correlation (XCOR)

Y

Cannot Rely on SRAM

Spectral Analysis

Fast Fourier Transform (FFT)

Discrete Wavelet Transform (DWT)

Butterworth Bandpass Filter (BBF)

Similarity Measures

Dynamic Time Warping (DTW)

Cross Correlation (XCOR)

Locations (log scale)

Cannot Rely on SRAM

Spectral Analysis

Fast Fourier Transform (FFT)

Discrete Wavelet Transform (DWT)

Butterworth Bandpass Filter (BBF)

Similarity Measures

Dynamic Time Warping (DTW)

Cross Correlation (XCOR)

Locations (log scale)

Cannot Rely on SRAM

Spectral Analysis

Fast Fourier Transform (FFT)

Discrete Wavelet Transform (DWT)

Butterworth Bandpass Filter (BBF)

Similarity Measures

Dynamic Time Warping (DTW)

Cross Correlation (XCOR)

Locations (log scale)

We Propose Swapping

BBF Example

Y

Frequency

Butterworth Bandpass Filter

SRAM

Fixed Locations

BBF Example

Butterworth Bandpass Filter SRAM

Frequency

Fixed Locations

BBF Example

21

Ideal System

Personalized Treatment

Existing System

Existing System

Adding SRAM

Locations (log scale)

Promise of Swapping

Constraints for Swapping

Shaping Coverage

Shaping Coverage (Bandwidth)

Shaping Coverage (Latency)

Promise of Swapping

33

• NVMs are the future of neural interfaces

- NVMs are the future of neural interfaces
- We propose swapping as a power optimization

- NVMs are the future of neural interfaces
- We propose swapping as a power optimization
- Exploring both algorithms and devices

- NVMs are the future of neural interfaces
- We propose swapping as a power optimization
- Exploring both algorithms and devices
- Translate theory to practice

meugur.github.io muhammed.ugur@yale.edu

Questions?

