

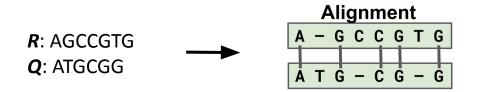
Electrical and Computer Engineering JACOBS SCHOOL OF ENGINEERING

TURAKHIA LAB

TALCO: <u>Tiling Genome Sequence Alignment</u> using <u>Convergence of Traceback Pointers</u>

<u>Sumit Walia</u>, Cheng Ye, Arkid Bera, Dhruvi Lodhavia and Yatish Turakhia University of California San Diego

Best Paper Nominee, HPCA'24


- Current genome sequence alignment algorithms, accelerators and their limitations
- **TALCO**: A tiling technique based on convergence of traceback pointers for genome sequence alignment
- Key Contributions and Results

- Current genome sequence alignment algorithms, accelerators and their limitations
- TALCO: A tiling technique based on convergence of traceback pointers for genome sequence alignment
- Key Contributions and Results

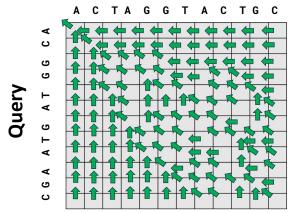
Genome Sequence Alignment

 Sequence alignment: Given two sequences, Reference (R) and Query (Q), assign gaps ("-") in R and Q to produce a valid alignment that maximizes the alignment score

Broad Classification of Alignment Algorithms

Classical Dynamic Programming (DP) Algorithms

Non-Classical Algorithms


Ex: Needleman-Wunsch, Smith-Waterman

Ex: WFA, Myers' O(ND)

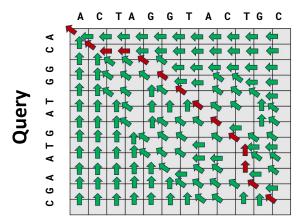
Classical DP based Alignment Algorithms

Classical Dynamic Programming (DP) Algorithms

Ex: Needleman-Wunsch, Smith-Waterman

Reference

1. Matrix Fill (Store traceback pointers)


Non-Classical Algorithms

Ex: WFA, Myers' O(ND)

Classical DP based Alignment Algorithms

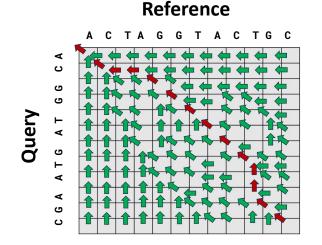
Classical Dynamic Programming (DP) Algorithms

Ex: Needleman-Wunsch, Smith-Waterman

Reference

Non-Classical Algorithms

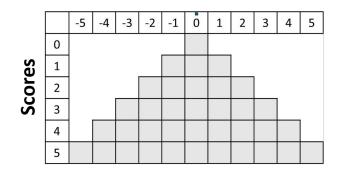
Ex: WFA, Myers' O(ND)


AC	ТА	A G	G	т	A	С	т	-	-	G	С
AC		- G	G	Т	Α	G	Т	Α	Α	G	С

- **1.** Matrix Fill (Store traceback pointers)
- 2. Optimal traceback path

Non-Classical Alignment Algorithms

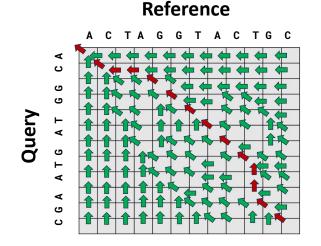
Classical Dynamic Programming (DP) Algorithms


Ex: Needleman-Wunsch, Smith-Waterman

Non-Classical Algorithms

Ex: WFA, Myers' O(ND)

Diagonals

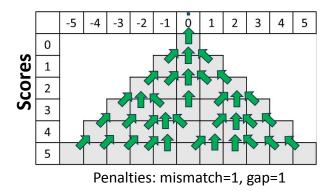

- 1. Matrix Fill (Store traceback pointers)
- 2. Optimal traceback path

٢

Non-Classical Alignment Algorithms

Classical Dynamic Programming (DP) Algorithms

Ex: Needleman-Wunsch, Smith-Waterman

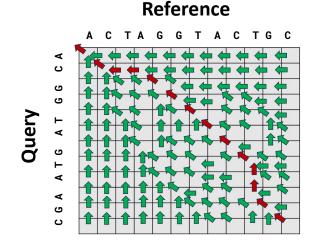


- 1. Matrix Fill (Store traceback pointers)
- 2. Optimal traceback path

Non-Classical Algorithms

Ex: WFA, Myers' O(ND)

Diagonals

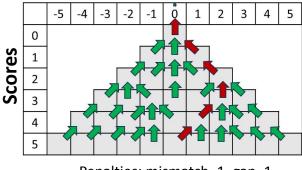

1. Matrix Fill (Store traceback pointers)

TALCO: Tiling Genome Sequence Alignment using Convergence of Traceback Pointers

Non-Classical Alignment Algorithms

Classical Dynamic Programming (DP) Algorithms

Ex: Needleman-Wunsch, Smith-Waterman



- 1. Matrix Fill (Store traceback pointers)
- 2. Optimal traceback path

Non-Classical Algorithms

Ex: WFA, Myers' O(ND)

Diagonals

Penalties: mismatch=1, gap=1

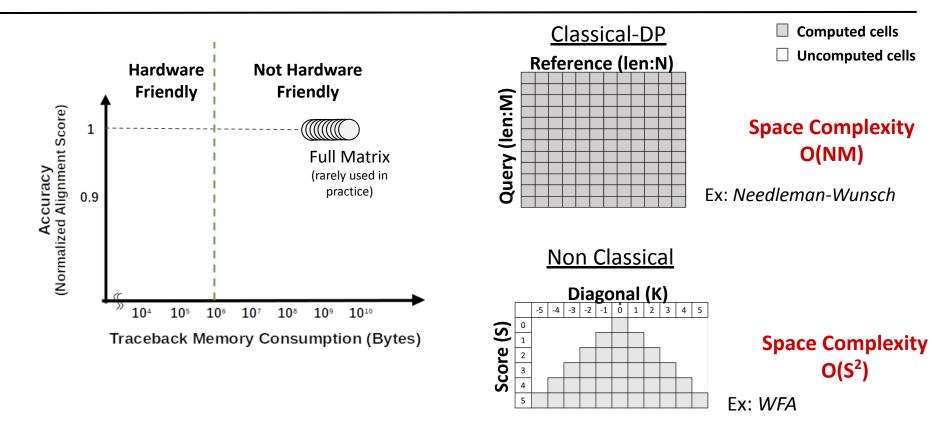
1. Matrix Fill (Store traceback pointers)

2. Optimal traceback path

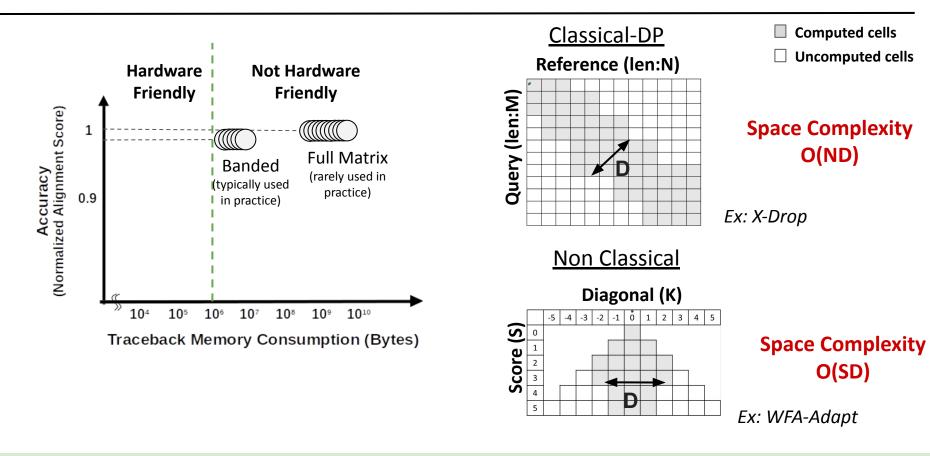
Comparison: Classical-DP and Non-Classical

Classical Dynamic Programming (DP) Algorithms

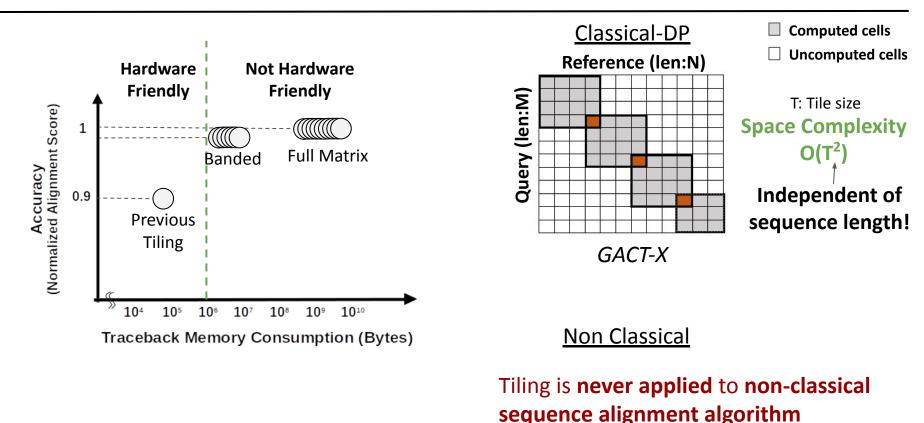
Non-Classical Algorithms


Ex: Needleman-Wunsch, Smith-Waterman

Ex: WFA, Myers' O(ND)


Both categories of algorithms produce optimal alignments

Uniform dependencies	Non-Uniform dependencies				
Easier to accelerate	Harder to accelerate				
More popular	Very Fast for similar sequences				


Full Matrix Sequence Alignment Algorithms

Banded Sequence Alignment Algorithms

Tiling heuristic

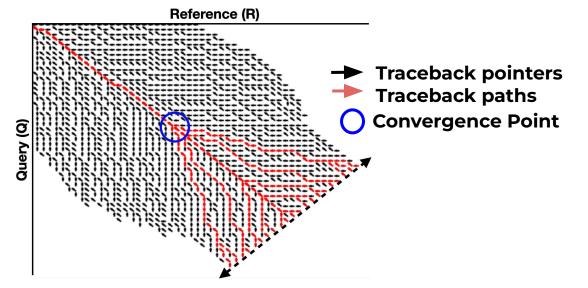
Architecture Papers Adopting Tiling Heuristics

- GACT Darwin: A Genomics Co-processor Provides up to 15,000X Acceleration on Long Read Assembly (ASPLOS 2018 Best Paper Award)
- GACT-X Darwin-WGA: A Co-processor Provides Increased Sensitivity in Whole Genome Alignments with High Speedup

Lower accuracy imposes challenges for tiling-based accelerators to be adopted in critical real-world applications (e.g. medical diagnoses)

Van der Auwera, Geraldine A., et al. "From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline." Current protocols in bioinformatics 43.1 (2013)

- **RAPIDx**: High-performance ReRAM processing in-memory accelerator for sequence alignment (**TCAD 2023**)
- **GMX:** Instruction Set Extensions for Fast, Scalable, and Efficient Genome Sequence Alignment (MICRO 2023)
- Scrooge: a fast and memory-frugal genomic sequence aligner for CPUs, GPUs, and ASICs (Bioinformatics 2023)


TALCO: Tiling Genome Sequence Alignment using Convergence of Traceback Pointers

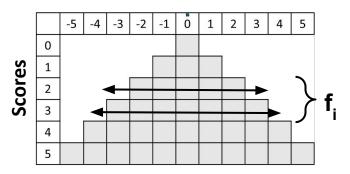
- Current genome sequence alignment algorithms, accelerators and their limitations
- **TALCO**: A tiling technique based on convergence of traceback pointers for genome sequence alignment
- Key Contributions and Results

Key Insight: Convergence of Traceback Paths

TALCO (<u>T</u>iling Long Genome <u>Alignment using <u>Co</u>nvergence of Traceback Pointers) is based on the following observation:</u>

Experiment: Pairwise sequence alignment using Needleman-Wunsch with X-Drop banding

TALCO: Tiling technique for long genome alignment


Frontier: The ith frontier (f_i) is a set of cells in the traceback matrix such that the scores and traceback pointers for cells in f_i depend only on the previous frontier, f_{i-1} .

Marker: A marker is a special frontier (f_{M}) in the TALCO algorithm that separates the two phases

Classical Dynamic Programming (DP) Algorithms Reference A C T A G G T A C T G C J ◄ C G G Query ⊢ ∢ G ⊢ ∢ ◄ G C

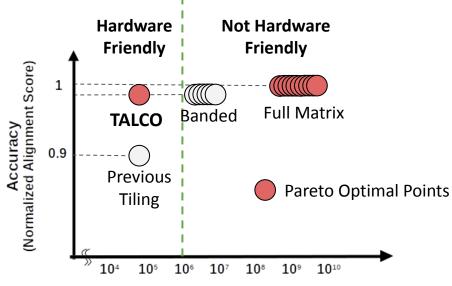
Penalties: mismatch=1, gap open=1, gap extend=1

TALCO: Tiling Genome Sequence Alignment using Convergence of Traceback Pointers

TALCO: Tiling technique for long genome alignment

Frontier: The ith frontier (f_i) is a set of cells in the traceback matrix such that the scores and traceback pointers for cells in f_i depend only on the previous frontier, f_{i-1} .

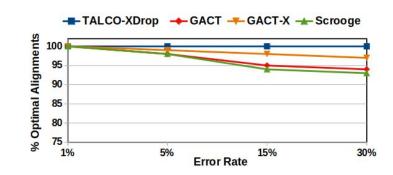
Marker: A marker is a special frontier (f_{M}) in the TALCO algorithm that separates the two phases


TALCO algorithm has two phases:

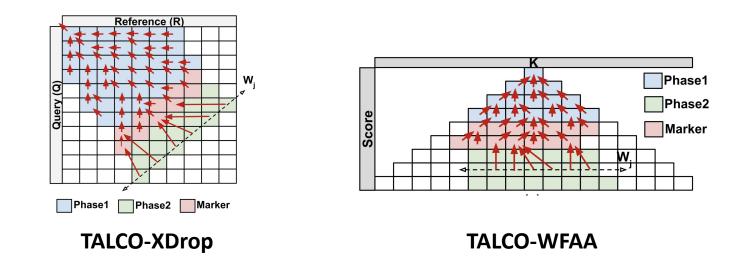
- 1. Stores traceback pointers till the **Marker**
- Find point of convergence of traceback pointers using pointer-redirection

TALCO applied to X-Drop Algorithm

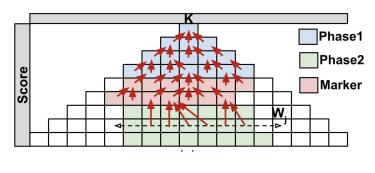
TALCO is on the Pareto Optimal Frontier


Traceback Memory Consumption (Bytes)

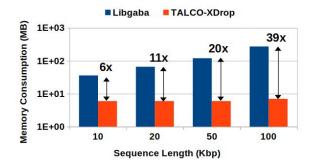
- Constant Space complexity
- Guarantees optimality under banding constraints



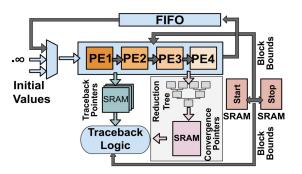
- Current genome sequence alignment algorithms, accelerators and their limitations
- TALCO: A tiling technique based on convergence of traceback pointers for genome sequence alignment
- Key Contributions and Results


1. TALCO guarantees optimality under banding constraints

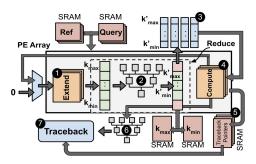
- 1. TALCO guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (TALCO- XDrop) and WFA-Adapt (TALCO-WFAA)



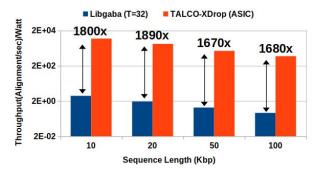
- **1.** TALCO guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (TALCO- XDrop) and WFA-Adapt (TALCO-WFAA)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments

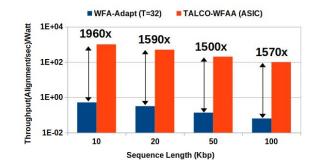

TALCO-WFAA

- **1.** TALCO guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (TALCO- XDrop) and WFA-Adapt (TALCO-WFAA)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments
- TALCO-XDrop and TALCO-WFAA (software) achieves up to 39x and 57x improvement in memory footprint, respectively, compared to software baselines



- **1.** TALCO guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (TALCO- XDrop) and WFA-Adapt (TALCO-WFAA)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments
- TALCO-XDrop and TALCO-WFAA (software) achieves up to
 39x and 57x improvement in memory footprint, respectively, compared to software baselines
- 5. Designed hardware accelerators for TALCO-XDrop and TALCO-WFAA




TALCO-XDrop hardware design

TALCO-WFAA hardware design

- **1.** TALCO guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (TALCO- XDrop) and WFA-Adapt (TALCO-WFAA)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments
- TALCO-XDrop and TALCO-WFAA (software) achieves up to
 39x and 57x improvement in memory footprint, respectively, compared to software baselines
- 5. Designed hardware accelerators for TALCO-XDrop and TALCO-WFAA
- TALCO-XDrop and TALCO-WFAA (ASIC) achieves up to ~1,900X and ~2,000X, respectively, improvement in alignment throughput/watt over software baselines

- **1.** TALCO guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (TALCO- XDrop) and WFA-Adapt (TALCO-WFAA)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments
- TALCO-XDrop and TALCO-WFAA (software) achieves up to
 39x and 57x improvement in memory footprint, respectively, compared to software baselines
- 5. Designed hardware accelerators for TALCO-XDrop and TALCO-WFAA
- TALCO-XDrop and TALCO-WFAA (ASIC) achieves up to ~1,900X and ~2,000X, respectively, improvement in alignment throughput/watt over software baselines
- 7. We synthesized TALCO-XDrop and TALCO-WFAA for FPGAs available on the Amazon EC2 FPGA instances

https://github.com/TurakhiaLab/TALCO/blob/main/hardware/README.md

Building on AWS EC2 F1 instance

Follow the below instructions to execute TALCO-XDrop and TALCO-WFAA on the AWS EC2 F1 instance, f1.2xlarge.

Clone aws-fpga repository

git clone https://github.com/aws/aws-fpga cd aws-fpga source vitis_runtime_setup.sh

Clone TALCO repository

git clone https://github.com/TurakhiaLab/TALCO.git export TALCO_DIR=\$PWD/TALCO cd TALCO/hardware/TALCO-XDrop

Steps for running on the EC2 F1 instance, f1.2xlarge (MODE-hw)

source \$TALCO_DIR/hardware/scripts/run.sh
\$TALCO_DIR/dataset/sequence.fa TALCO_XDrop.awsxclbin

- **1.** TALCO guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (TALCO- XDrop) and WFA-Adapt (TALCO-WFAA)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments
- TALCO-XDrop and TALCO-WFAA (software) achieves up to
 39x and 57x improvement in memory footprint, respectively, compared to software baselines
- 5. Designed hardware accelerators for TALCO-XDrop and TALCO-WFAA
- TALCO-XDrop and TALCO-WFAA (ASIC) achieves up to ~1,900X and ~2,000X, respectively, improvement in alignment throughput/watt over software baselines
- 7. We synthesized TALCO-XDrop and TALCO-WFAA for FPGAs available on the Amazon EC2 FPGA instances

https://github.com/TurakhiaLab/TALCO/

HPCA Artifact Evaluation

Electrical and Computer Engineering JACOBS SCHOOL OF ENGINEERING

TALCO: <u>Tiling Genome Sequence Alignment</u> using <u>Convergence of Traceback Pointers</u>

Sumit Walia Ph.D student

Cheng Ye MS student

Arkid Bera MS student

Dhruvi L. MS student

Yatish Turakhia Assistant Professor, UCSD

Thank you!