
ViralWasm: a client-side user-friendly web application
suite for viral genomics
Daniel Ji, Robert Aboukhalil, Niema Moshiri
BioSys Workshop 2024

Computational Tools in Epidemiology: Problem Statement

Computational Tools in Epidemiology: Problem Statement

● Goal: Fast and accurate diagnosis of patient viral sequences
○ Take raw sequence data and perform viral diagnosis and mutation evolution

Computational Tools in Epidemiology: Problem Statement

● Goal: Fast and accurate diagnosis of patient viral sequences
○ Take raw sequence data and perform viral diagnosis and mutation evolution

● Learning Curve
○ Requirement: Computer-science background
○ Technical know-how: Software installation, terminal usage

Computational Tools in Epidemiology: Problem Statement

● Typically requires 3-4 molecular
sequencing programs per job

Computational Tools in Epidemiology: Problem Statement

● Typically requires 3-4 molecular
sequencing programs per job

● Tool selection: navigating choices is
already difficult

Computational Tools in Epidemiology: Problem Statement

● Typically requires 3-4 molecular
sequencing programs per job

● Tool selection: navigating choices is
already difficult

● Tools requires dozens of dependencies
and prerequisites

Computational Tools in Epidemiology: Problem Statement

● Typically requires 3-4 molecular
sequencing programs per job

● Tool selection: navigating choices is
already difficult

● Tools requires dozens of dependencies
and prerequisites

● Regular users: without admin access,
installations can be nearly impossible

Computational Tools in Epidemiology: Problem Statement

● Typically requires 3-4 molecular
sequencing programs per job

● Tool selection: navigating choices is
already difficult

● Tools requires dozens of dependencies
and prerequisites

● Regular users: without admin access,
installations can be nearly impossible

● Users have to worry more about
successfully installing tools than using
the tool itself

Computational Tools in Epidemiology: Problem Statement

Problem Statement (Cont.)

● Data and Server Concerns

Problem Statement (Cont.)

● Data and Server Concerns
○ Data Security: Sending data to third-party servers

Problem Statement (Cont.)

● Data and Server Concerns
○ Data Security: Sending data to third-party servers
○ Hosting Costs:

■ Always-on servers: High cost
■ Infrequent-use (cold-boot) servers: Long boot times

Problem Statement (Cont.)

● Data and Server Concerns
○ Data Security: Sending data to third-party servers
○ Hosting Costs:

■ Always-on servers: High cost
■ Infrequent-use (cold-boot) servers: Long boot times

● Remote Area Limitations

Our Solution: ViralWasm

Our Solution: ViralWasm

ViralWasm:
● Web-based end-to-end molecular epidemiology pipelines and standalone tools.
● Compile from source code: no need to rewrite tools in web-based languages.

Our Solution: ViralWasm

ViralWasm:
● Web-based end-to-end molecular epidemiology pipelines and standalone tools.
● Compile from source code: no need to rewrite tools in web-based languages.

Complete Client-Side Functionality
● Ports tools to the web for client-side, serverless operation.
● Instead of C/C++/Python to machine code: compiles source to WebAssembly.
● Instant tool operation in the browser once deployed.

Our Solution: ViralWasm

ViralWasm:
● Web-based end-to-end molecular epidemiology pipelines and standalone tools.
● Compile from source code: no need to rewrite tools in web-based languages.

Complete Client-Side Functionality
● Ports tools to the web for client-side, serverless operation.
● Instead of C/C++/Python to machine code: compiles source to WebAssembly.
● Instant tool operation in the browser once deployed.

User Experience
● Clean, intuitive interfaces for data upload and parameter adjustments.

Our Solution: ViralWasm

ViralWasm:
● Web-based end-to-end molecular epidemiology pipelines and standalone tools.
● Compile from source code: no need to rewrite tools in web-based languages.

Complete Client-Side Functionality
● Ports tools to the web for client-side, serverless operation.
● Instead of C/C++/Python to machine code: compiles source to WebAssembly.
● Instant tool operation in the browser once deployed.

User Experience
● Clean, intuitive interfaces for data upload and parameter adjustments.

Offline Capabilities
● Entire website + tool downloadable for offline use, just through a few clicks.

Technical Approach

Technical Approach

Two primary pipelines
● ViralWasm-Epi: multi-sequence alignment, molecular clustering, phylogenetic tree

inference, and tree rooting and dating
○ Pipeline software: ViralMSA, minimap2, tn93, FastTree 2, Seqtk, LSD2

Technical Approach

Two primary pipelines
● ViralWasm-Epi: multi-sequence alignment, molecular clustering, phylogenetic tree

inference, and tree rooting and dating
○ Pipeline software: ViralMSA, minimap2, tn93, FastTree 2, Seqtk, LSD2

● ViralWasm-Consensus: sequence trimming, consensus genome generation
○ Pipeline software: minimap2, fastp, ViralConsensus

Technical Approach

Two primary pipelines
● ViralWasm-Epi: multi-sequence alignment, molecular clustering, phylogenetic tree

inference, and tree rooting and dating
○ Pipeline software: ViralMSA, minimap2, tn93, FastTree 2, Seqtk, LSD2

● ViralWasm-Consensus: sequence trimming, consensus genome generation
○ Pipeline software: minimap2, fastp, ViralConsensus

Web technologies used: Emscripten, Biowasm, Pyodide, React.js, and Bootstrap

Benchmarks

Benchmarks

● Used Playwright testing framework for accuracy and performance benchmarking of
ViralWasm web app
○ Simulated a page browser and automated user input and tool run

Benchmarks

● Used Playwright testing framework for accuracy and performance benchmarking of
ViralWasm web app
○ Simulated a page browser and automated user input and tool run

● Benchmarks themselves ran automatically via Github Actions CI/CD workflow

Benchmarks

● Used Playwright testing framework for accuracy and performance benchmarking of
ViralWasm web app
○ Simulated a page browser and automated user input and tool run

● Benchmarks themselves ran automatically via Github Actions CI/CD workflow
● Ran on Ubuntu 22.04 machine, 2 processor cores on Intel Xeon CPU E5-2673 v3 @

2.40GHz with 7GiB RAM

Benchmarks

● Used Playwright testing framework for accuracy and performance benchmarking of
ViralWasm web app
○ Simulated a page browser and automated user input and tool run

● Benchmarks themselves ran automatically via Github Actions CI/CD workflow
● Ran on Ubuntu 22.04 machine, 2 processor cores on Intel Xeon CPU E5-2673 v3 @

2.40GHz with 7GiB RAM
● Web vs. CLI benchmarks (full-pipeline runs): web scale reasonably in terms of memory

and runtime

Benchmarks: ViralWasm-Epi

MSA, molecular clustering, phylogenetic tree inference, and tree rooting and dating

Benchmarks: ViralWasm-Consensus

sequence trimming, consensus genome generation

Results & Moving Forward

Results & Moving Forward

● A relative slowdown compared to CLI tool counterparts, by 2-3x

Results & Moving Forward

● A relative slowdown compared to CLI tool counterparts, by 2-3x
○ Tested datasets are large for individual public health departments

Results & Moving Forward

● A relative slowdown compared to CLI tool counterparts, by 2-3x
○ Tested datasets are large for individual public health departments
○ Job times are still reasonable for laptops and even tablets

■ Often less than a minute, at worst ~5 min.

Results & Moving Forward

● A relative slowdown compared to CLI tool counterparts, by 2-3x
○ Tested datasets are large for individual public health departments
○ Job times are still reasonable for laptops and even tablets

■ Often less than a minute, at worst ~5 min.
○ A worthwhile trade-off

Results & Moving Forward

● A relative slowdown compared to CLI tool counterparts, by 2-3x
○ Tested datasets are large for individual public health departments
○ Job times are still reasonable for laptops and even tablets

■ Often less than a minute, at worst ~5 min.
○ A worthwhile trade-off

● Moving Forward

Results & Moving Forward

● A relative slowdown compared to CLI tool counterparts, by 2-3x
○ Tested datasets are large for individual public health departments
○ Job times are still reasonable for laptops and even tablets

■ Often less than a minute, at worst ~5 min.
○ A worthwhile trade-off

● Moving Forward
○ Scaling to larger datasets

Results & Moving Forward

● A relative slowdown compared to CLI tool counterparts, by 2-3x
○ Tested datasets are large for individual public health departments
○ Job times are still reasonable for laptops and even tablets

■ Often less than a minute, at worst ~5 min.
○ A worthwhile trade-off

● Moving Forward
○ Scaling to larger datasets
○ Reducing web app / WebAssembly overhead

■ Utilizing WebGPU

Results & Moving Forward

● A relative slowdown compared to CLI tool counterparts, by 2-3x
○ Tested datasets are large for individual public health departments
○ Job times are still reasonable for laptops and even tablets

■ Often less than a minute, at worst ~5 min.
○ A worthwhile trade-off

● Moving Forward
○ Scaling to larger datasets
○ Reducing web app / WebAssembly overhead

■ Utilizing WebGPU
○ Automating custom tool Wasm web app creation

Live Demo
niema-lab.github.io/ViralWasm

https://niema-lab.github.io/ViralWasm

Thank You! Questions?
daji@ucsd.edu | robert.aboukhalil@gmail.com | niema@ucsd.edu

